Bayesian Inference with Spiking Neurons
نویسندگان
چکیده
Humans and other animals behave as if we perform fast Bayesian inference underlying decisions and movement control given uncertain sense data. Here we show that a biophysically realistic model of the subthreshold membrane potential of a single neuron can exactly compute the numerator in Bayes rule for inferring the Poisson parameter of a sensory spike train. A simple network of spiking neurons can construct and represent the Bayesian posterior density of a parameter of an external cause that affects the Poisson parameter, accurately and in real time. Bayesian Inference with Spiking Neurons
منابع مشابه
Bayesian Spiking Neurons I: Inference
We show that the dynamics of spiking neurons can be interpreted as a form of Bayesian inference in time. Neurons that optimally integrate evidence about events in the external world exhibit properties similar to leaky integrate-and-fire neurons with spike-dependent adaptation and maximally respond to fluctuations of their input. Spikes signal the occurrence of new information-what cannot be pre...
متن کاملBayesian Spiking Neurons II: Learning
In the companion letter in this issue ("Bayesian Spiking Neurons I: Inference"), we showed that the dynamics of spiking neurons can be interpreted as a form of Bayesian integration, accumulating evidence over time about events in the external world or the body. We proceed to develop a theory of Bayesian learning in spiking neural networks, where the neurons learn to recognize temporal dynamics ...
متن کاملProbabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons
An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry ...
متن کاملHierarchical Bayesian Inference in Networks of Spiking Neurons
There is growing evidence from psychophysical and neurophysiological studies that the brain utilizes Bayesian principles for inference and decision making. An important open question is how Bayesian inference for arbitrary graphical models can be implemented in networks of spiking neurons. In this paper, we show that recurrent networks of noisy integrate-and-fire neurons can perform approximate...
متن کاملNeurons as Monte Carlo Samplers: Bayesian Inference and Learning in Spiking Networks
We propose a spiking network model capable of performing both approximate inference and learning for any hidden Markov model. The lower layer sensory neurons detect noisy measurements of hidden world states. The higher layer neurons with recurrent connections infer a posterior distribution over world states from spike trains generated by sensory neurons. We show how such a neuronal network with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014